Plasmodium merozoite

invasion of erythrocytes

A merozoite caught invading an erythrocyte, seen by electron microscopy. Malaria by A. J. Knell

Scanning electron micrograph of a merozoite attached to a red blood cell. The parasite appears to have distorted the red blood cell surface. Magnification x 10.000. Malaria by A. J. Knell

Phases of merozoite invasion

Bannister L. H., *et al*, 1977, Cowman A. F., *et al*, 2000 Sherman I. W., 1998

Morphological development of blood forms

Bannister L. H., *et al.* 2000, Sherman I. W., 1998 Anders R. F., *et al.* 1991 A merozoite, showing the apical prominence with a rhoptry, dense granules, and a very indented nucleus.

A ring stage of the cup-like form, showing the nucleus surrounded by ribosomes and some endoplasmic reticulum.

Bannister L. H., *et al.* 2000, Sherman I. W., 1998 Anders R. F., *et al.* 1991

Mid-trophozoite stage, showing the nucleus, the pigment vacuole and a cytostome with a forming food vacuole. "Trophozoite" means the maturing stage. Greek "tropho" means "to nurture".

Trophozoite

Bannister L. H., *et al.* 2000, Sherman I. W., 1998 Anders R. F., *et al.* 1991

A schizont, showing a series of nuclei and developing merozoites containing rounded early rhoptries around their perimeters. Note the irregular appearance of the red blood cell (RBC) surface and the presence of knobs. The name "schizont" comes from the Greek "schizo", meaning "to tear apart".

Bannister L. H., *et al.* 2000, Sherman I. W., 1998 Anders R. F., *et al.* 1991

Plasmodium falciparum morphology

Merozoite surface proteins

Bannister L. H., *et al*, 1977, Cowman A. F., *et al*, 2000 Sherman I. W., 1998, Cowman and Crabb, 2002 Chitnis and Blackman, 2000 Merozoite pellicle and surface coat

Fundación Instituto de Inmunología de Colombia

Receptor-ligand interactions

b =
$$(k + r + l) - ((k + r + l)^2 - 4rl)^{1/2}$$

r > 250 binding sites per cell l < 200 nM

b/l is the binding slope, if b/l ≥ 0.02

Behr M., *et al.*, 2001, Attle A. D. and Raines R. T., 1995, Hulme E. C., *et al.*, 1993, Yamamura H. I., *et al.*, 1978

Receptor-ligand binding assay Urquiza M., et al., 1996, Parasite Immunology, 18: 515 **Remove aqueous** 5 washes **FIDIC** phase Aqueous 3000 x g/ 2min phase 90 min/4°C γ-Gamma **Total binding** Counter **Total binding** PBS 1x Cell + Pep¹²⁵ I Cell-Pep ¹²⁵ I Cell-Pep ¹²⁵ I 20 volume

Factors influencing the binding assay

Rodríguez L.E., et al., 2000, Parasitology, 120: 225

Binding assay at 20% to 60% haematocrit T 18 °C, 90 min).

Effects of reaction time on the slope values of the specific binding curve (haematocrit 50% T 18 °C).

Effects on slope values of specific binding curve at temperatures between 4°C and 37°C (haematocrit 60% 60 min).

HABP saturation curve

Urquiza M., et al., 1996, Parasite Immunology, 18: 515

Free ¹²⁵I-peptide (nM)

Critical residues for peptide-erythrocyte interaction

Suárez J. E., et al., 2000, Mem Inst Oswaldo Cruz, 95: 495

Analogues

* Original peptide

HABP binding to human and non-human erythrocytes

Suárez J. E., et al., 2000, Mem Inst Oswaldo Cruz, 95: 495

Erythrocytes	cytes Specific binding (%)		
Humans	100 ± 8		
Aotus	59 ± 6		
Rabbits	44 ± 7		
Goats	0 ± 4		
Horses	0 ± 2		
Chickens	8 ± 4		

Merozoite surface proteins

Plasmodium falciparum

•The MSP-I protein is a 195 kDa polymorphic surface membrane protein of the merozoite.

- •MSP-1 is synthesized in schizogony and contain variable, semiconserved and constant sequences.
- •Extensive proteolytic processing of 83, 30, 38 and 42 (33, 19) kDa fragments.
- •19 kDa contain two cysteine-rich EGF-like regions.
- •The SPf66 synthetic malaria vaccine, contains a sequence from the 83 kDa fragment: YSLFQKEKMVL

Holder A. A. and Blackman 1994, Nikodem D. P. and Davidson E. A. 2000, Urquiza M. *et al.*, 1996, Patarroyo M. E. *et al.*, 1988, Lozano J. M. *et al.*, 1998

Model of the overall structure of processed MSP-1.

p83

p30

p38

p42

The natural processing fragments, roughly drawn to scale, are given in *white* (p83) or in differently *shaded gray* as indicated. Interacting subunits overlap with their circumferences. Linker regions accessible to thrombin cleavage are drawn as *black lines* connecting various domains and amino acid positions where cleavage occurs are indicated by *arrows* and respective *numbers*.

FIDIC

The 3D structure of PcMSP-1₁₉

The 3D structure of PfMSP-1₁₉

Chitarra V. et al., 1999, Morgan W.D. et al., 1999

Specific MSP-I peptide binding to erythrocytes.

Urquiza M., *et al.*, 1996, Parasite Immunology, 18: 515

Peptide	Kd (nM)
1513	200 ± 23
1522	150 ± 13
1577	180 ± 23
1582	140 ± 14
1585	180 ± 20
1589	250 ± 25
1590	180 ± 18
1591	190 ± 27
1598	240 ± 36
5501	230 ± 45

The binding affinity (black bars) is the slope of the specific binding graph. The red line separates peptides having binding capacity greater than or equal to 0.020 pmol bound/pmol added peptide

Invasion and development inhibition assays

Urquiza M., et al., 1996, Parasite Immunology, 18: 515

	_	Peptide	Invasion inhibition	Development inhibition
	_		%± SD	% + SD
		1513	60 ± 10	4+8
High binding		1522	60 ± 14	62 + 21
activity 2		1577	43 ± 3	21 + 3
		1582	50 ± 2	ND
	200 µM each	1585	3 ± 8	17 + 5
		1589	29 ± 1	12 + 3
		1590	10 ± 5	8+4
		1591	0 ± 7	25 + 15
		1598	30 ± 4	0±9
Mixture	20 µM each	A11	42 + 11	A
high binding	2 µM each	All	32 ± 12	-0±3
	$0.2\mu\text{M}$ each	All	18 ± 3	0±4
		1517	0 ± 6	12±1
Low binding		1551	5 ± 1	14 + 2
activity	$200 \mu M$ each	1560	7 ± 8	21 + 4
		1581	0 ± 3	N.D.
		1596	0 ± 6	N.D.
		Chloroquine	98 ± 19	99±4

Structural features for HABPs MSP-1

Espejo F., *et al.*, 2004, **BBRC**, 315: 418 **Cubillos M.**, *et al.*, 2003, **Proteins**, 50: 400

Structural features for HABPs MSP-1

Espejo F., et al., 2001, Angew Chem Int Ed Engl., 40: 4654

PfMSP-1₁₉ and peptide 5501

Morgan W.D. et al., 1999

Pf MSP-2 has 45 kDa to 56 kDa.

•It has a highly polymorphic central region flanked by conserved regions.

•**PvMSP-2** (185 kDa) and **PkMSP-2** (105 kDa) are only related in terms of structure. •Its function has not yet been determined.

MSP-2 peptide specific binding to erythrocytes.

Ocampo M., et al., 2000, J Peptide Res., 55: 216

Invasion and development inhibition assays

Ocampo M., et al., 2000, J Peptide Res., 55: 216

			Inhibition of invasion		Inhibition of development
		Peptide	Hypoxanthine % ± SD	Giemsa % ± SD	Hypoxanthine % ± SD
		4044	96 ± 12	n.d.	97 ± 20
High binding activity	200µм each	4045	31 ± 1	n.đ.	5 ± 33
		4053	95 ± 5	n.d.	90 ± 15
Mixture	66µм each	ALL	67 ± 1	42 ± 1	n.d.
	7µм each	ALL	31 ± 14	26 ± 1	n.d.
	1.3µм each	ALL	0 ± 6	9±1	n.d.
Low binding activity	200µм each	4048	4 ± 14	n.d.	5 ± 33
		Chloroquine	100	100	100

The percentage of inhibition was calculated as being the difference between erythrocytes invaded in the control culture without peptide and erythrocytes invaded in the culture to which the peptide mixture had been added.

Structural features for HABPs MSA-2

Cifuentes G., et al., 2003, J Med Chem., 46: 2250

MSP-3

Rodríguez L. E., et al., 2004, submitted

Peptide	Sequence	2.0 FIDIC
31192	¹ MKSFINITLSLFLLHLYIYI ²⁰	
31193	²¹ NNVASKEIVKKYNLNLRNAI ⁴⁰	
31194	⁴¹ LNNNSQIENEENDIKYELNE ⁶⁰	
<u>31195</u>	⁶¹ QNDENVNTPIVGNSMEFGEGY ⁸⁰	
<u>31196</u>	⁸¹ FSADDQKDIEAYKKAKQASQ ¹⁰⁰	
<u>31197</u>	¹⁰¹ DAEQAAKDAENASKEAEEAAY ¹²⁰	
<u>31198</u>	¹²¹ KEAVNLKESDKSYTKAKEAC ¹⁴⁰	
<u>31199</u>	¹⁴¹ ТААЅ КАККАVЕТАLКАКDDАУ ¹⁶⁰	
<u>31200</u>	¹⁶¹ ETAL KTSETPEKPSRINLFSY ¹⁸⁰	24402 440
31201	¹⁸¹ R K T K E Y A E K A K N A Y E K A K N A 200	31193 140
<u>31202</u>	²⁰¹ YQKANQAVLKAKEASSYDYI ²²⁰	31202 260
31203	²²¹ LGWEFGGGVPEHKKEENMLSY ²⁴⁰	31209 215
31204	²⁴¹ H L Y V S S K D K E N I S K E N D D V L ²⁶⁰	
31205	261 DEKEEEAEETEEEELEEKNEY 280	
31206	²⁸¹ EETESEISEDEEEEEEEKEY ³⁰⁰	
31207	³⁰¹ ЕЕΝΕ КККЕ Q ЕКЕ Q S N E N N D Q Y ³²⁰	
31208	³²¹ KKDMEAQNLISKNQNNNEKNY ³⁴⁰	
31209	³⁴¹ VKEAAESIMKTLAGLIKGNNY ³⁶⁰	
31210	³⁶¹ QIDSTLKDLVEELSKYFKNH ³⁸⁰	

- •PfMSP-3 (48 kDa) is very polymorphic (it does not anchor to the membrane).
- •It has 3 contiguous regions having alanine-rich repeat amino-acid motifs.
- •It possibly includes α helices forming coiled-coils in its structure.
- •PvMSP-3s shares its general structure but its sequence only shares 30% homology.
- •Leucine ziper

Inhibition of parasite invasion to erythrocytes by MSP-3 peptides

Rodríguez L. E., et al., submitted

	% Inhibition Invasion		
Peptide	200 μM ^a	100 µM ª	
31193	85 ± 2	8 ± 6	
31202	59 ± 4	38 ± 1	
31209	55 ± 1	2 ± 1	
Control chloroquine	100) ± 1	
Control EGTA	100	± 1	

^a Mean ± standard deviation of three experiments.

MSP-4

This is a 40 kDa protein.
It has an EGF-like domain towards the C-terminal.
It has a low degree of diversity.

MSP-5

This is a protein which is closely related to MSP4
It is very conserved.
It is present on the merozoite surface

MSP-7

This is a 22 kDa precursor.
It presents α helix and β sheet structural elements.
Its proteolytic processing produces a 19 kDa polypeptide.

McColl & Anders 1994, Oeuvray *et al.*, 1994, Marshall *et al.*, 1997, Gardner *et al.*, 1998, Pearce *et al.*, 2004, Trucco C *et al.*, 2001, Wu T. *et al.*, 199 Goschnick *et al.*, 2004, Przyborski J. M. *et al.*, 2003

Peptide)	Sequence		2.0		FIDIC
31173	1	MNKIYNITFLFILLNLYINE	20			
31174	21	NNFIRNELINEKNHNLRNGSY	40			
31175	41	MYNNDKILSKNEVDTNIESN	60			
31176	61	ENSIHESGHKIDGEEVLKANY	80			
31177	81	VDDITYKKKNVDDSEIPFSG	100		Pentide	Kd (nM)
31178	101	YDIQATYQFPSTSGGNNVIP	120		replice	
31179	121	LPIKQSGENQYTVTSISGIQ	140		31175	230
31180	141	KGANGLTGATENITQVVQANY	160		31178	200
31181	161	SETNKNPTSHSNSTTTSLNNY	180		31191	150
31182	181	NILGWEFGGGAPQNGAAEDKY	200			
31183	201	KTEYLLEQIKIPSWDRNNIP	220			
31184	221	DENEQVIEDPQEDNKDEDEDY	240			
31185	241	EETETENLETEDDNNEEIEEY	260			
31186	261	NEEDDIDEESVEEKEEEEEKY	280			
31187	281	KEEEEKKEEKKEEKKPDNEIY	300			
31188	301	TNEVKEEQKYSSPSDINAQN	320			
31189	321	LISNKNKKNDETKKTAENIVY	340			
31190	341	KTLVGLFNEKNEIDSTINNLY	360			
31191	361	EIDSTINNLVQEMIHLFSNNY	380			

•This is a 36 kDa protein.

•It forms a complex with MSP1 and MSP-7

•It has 85% similarity with MSP3 in the C-terminal region.

MSP-8

Puentes A., et al., 2003, Peptides, 24: 1015

Peptide	Sequence		2.0		
26348	MVFKSSDIFFFLFLVILYFN	20			
26349 ²¹	¹ N V V E G E N G T T N I E N N P G N N G <u>Y</u>	40			FIDIC
26350 41	¹ NMGPSGPKDKDKNIEKDVNH <u>Y</u>	60			
26351 ⁶¹	¹ N M S M N N N N N N N N N N N N N I N <u>Y</u>	80			
26352 ⁸¹	¹ N N N N N I N N N N N N N N N G N G <u>Y</u>	100			
26353 ¹⁰¹	¹ FSNFFNKLFGKKKDNKKEGE <u>Y</u>	120			
26354 ¹²¹	¹ E K N E E D L N S N K N I E S N K G S A <u>Y</u>	140			
26355 ¹⁴¹	¹ V T S N V G D T N N D A K A R D N N N N <u>Y</u>	160			
26356 ¹⁶¹	¹ D D N D D N D E N D D N D D N D D I D E <u>Y</u>	180			
26357 ¹⁸¹	I DERDDNDDNGDDNDDNGDD <u>Y</u>	200		Dontido	Kd (nM)
26358 201	<u>DDDNDDDDDNNDNNKNNSN Y</u>	220		Peplide	ru (mvi)
26359 ²²¹	NLTDTKKEGEKIDLGVQNKK <u>Y</u>	240			
26360 ²⁴¹	QNIFSTNNKGLNKYNIDNEL	260		26360	800
26361 ²⁶¹	KEVDALLKNDNYILNKYHVS	280		20000	500
26362 ²⁸¹	FFNNFEEDTYNKKKFIRPYD	300		26361	500
26363 ³⁰	L S L L K S I L I Y R Q R V T R N C V N	320		26368	550
26364 ³²	V F Q D L N A V F G K C Y N K D D T K L	340		26260	650
26365 ³⁴	SITRDKVKKELSRKNRNFVE <u>Y</u>	360		20309	030
26366 ³⁰	Y L I E M L E N T L N S M N D D F I N K	400		26373	450
26367 ³⁸		400			
26368 40	HEDSDIFLETYNLISGLNSN	420			
26369 42	IEEISIEKLKYAILQGKQIN	440			
26370 44	Y K I K D D I Y Y I L K N A Y A K Y F K	400			
263/1 40	I D V Y K K G K L L Y P I L Y Y H R N A	500			
26372 501	$\frac{1}{2}$	520			
26373 52		540			
20374 54	ICSPNNCCCDIHAKCSEINKOY	560			
26375	U V CECKDKEEGDG I V CSYSE	580			
26377 581		600			

•This is a 70 kDa protein.

•It has 2 EGF-like domains towards the C-terminal.

•It has a low degree of diversity.

•It forms a complex with MSP1, MSP4 and MSP5

Inhibition of merozoite invasion of human erythrocytes by MSP-8 HABPs

Puentes A., et al., 2003, Peptides, 24: 1015

Activity binding	Peptide	Invasion Inl	hibition (%) ^a
		200 µM	100 µM
High	26360	33 ± 7	11 ± 2
	26361	98 ± 1	20 ± 5
	26368	93 ± 1	9 ± 3
	26369	32 ± 2	10 ± 1
	26373	23 ± 3	10 ± 4
Low	26348	14 ± 2	4 ± 2
Control	2220	83 ± 7	13 ± 1
Chloroquine (0.5 mg/ml)		96 ± 1	
EGTA (50 mM)		100 ± 7	

^a Mean \pm S.D. from three experiments.

Puentes A., et al., 2004, Biochimie, In Press

Peptid	le	Sequence	2	0
31111	1	MFFKCNQVFTLVFLLLLYFN ⁴		
31112	21	NIVYTHVDDIKNTSQKKITY (
31113	41	DKYNKNKENMNNEKNDNKDN ⁽		
31114	61	K D N I Y N D N I N N D N I N N D N I N		
31115	81	NEDEYKFLSMKHYKDSLSNK		
31116	101	L N N E N D H M N Y L I R K R K D N T Q		
31117	121	<u>GSQHFNENIENNENVENNEN Y</u>		
31118	141	IENNENNENIENIENNENNE <u>Y</u>		
31119	161	NNENIENNENNENNENSSIM <u>Y</u>		
31120	181	N S E S Y N N I I N S N E H N E E Q I K		
31121	201	KKEEDLIEAFFPFILKKLDN <u>Y</u>		
31122	221	ESLSLDNKYDDYYNLPNDHN ²		
31123	241	DTHKENSSDHNLLGYKLGNN ²		
31124	261	LKSYLIEENDVSQKKTDDIN ²		
31125	281	E S A S S D S E N I Q E I L S T D S N T <u>Y</u>		
31126	301	<u>S H L K E R K N Q K A P P G E H K P E V Y</u>		
31127	321	KNALLNSQVASPKGEDEKKS <u>Y</u>		
31128	341	<u>Q P Q H P L V N S G D Q L Q H P K E I D Y</u>		
31129	361	<u>ENAEKIRRTLLKESRDIKNT Y</u>		
31130	381	TAIIDETVYKFEQLIMKGRY (
31131	401	YATAVRNFVIFKVNYICEYS (
31132	421	KCGPNSRCYIVEKDKEQCRC (
31133	441	RPNYIVDMSVNYFKCIPMKD (
31134	461	MNCSKNNGGCDVNAECTIVE <u>Y</u>		
31135	481	GAVKCQCSHLYFGDGVFCVK		
31136	501	N S Q T K Q T L Y I L F I V I L L V F Q		
31137	505	KQTLYILFIVILLVFQNFFI (

Peptide	Kd (nM)
31121	250
31122	130
31132	600

•This is a 61.2 kDa protein.

•Its proteolytic processing produces a 36 kDa polypeptide.

•It presents an ASN-rich region close to the N-terminal.

Inhibition of merozoite invasion of human erythrocytes by MSP-10 HABPs

Puentes A., et al., 2004, Biochimie, In Press

^a Mean \pm SD from three experiments.

Superposition of domains EGF-like and HABP of proteins MSP-10, MSP-8 and MSP-1.

Puentes A., et al., 2004, Biochimie, In Press

Apical Membrane Antigen-1 family

•Anti AMA-1 Mab Fab fragments inhibit P. knowlesi in vitro invasion.

•The gene has been cloned and characterised in: -P. falciparum 83/62 kDa

- •It is initially localised in the neck of the rhoptries but becomes re-localised on merozoite liberation.
- •It has 16 conserved extra-cellular cysteins and 3 domains linked by disulphur bridges.
- •It has been detected in advanced ring stages.

AMA-1

Urquiza M., et al., 2001, Vaccine, 19: 508

Peptid	e Sequence	2.0
4307	¹⁴ EFTYMINFGRGQNYWEHPYQ ³³	
4308	³⁴ KSDVYHPINEHREHPKEYQY ⁵³	
4309	⁵⁴ PLHQEHTYQQEDSGEDENTL ⁷³	
4310	⁷⁴ QHAYPIDHEGAEPAPQEQNL ⁹³	
4311	⁹⁴ FSSIEIVERSNYMGNPWTEY ¹¹³	
4312	¹¹⁴ MAKYDIEEVHGSGIRVDLGE ¹³³	
4313	¹³⁴ DAEVAGTQYRLPSGKCPVFG ¹⁵³	
4314	¹⁵⁴ KGIIIENSNTTFLTPVATGN <u>Y</u> ¹⁷³	
4315	¹⁷⁴ QYLKDGGFAFPPTEPLMSPM ¹⁹³	
4316	¹⁹⁴ TLDEMRHFYKDNKYVKNLDE ¹¹³	
4317	²¹⁴ LTLCSRHAGNMIPDNDKNSNY ²³³	
4318	²³⁴ YKYPAVYDDKDKKCHILYIA ²⁵³	
4319	²⁵⁴ AQENNGPRYCNKDESKRNSM ²⁷³	
4320	274 FCFRPAKDISFQNYTYLSKN 293	
4321	²⁹⁴ VVDNWEKVCPRKNLQNAKFG <u>Y</u> ³¹³	
4322	³¹⁴ LWVDGNCEDIPHVNEFSAIDY ³³³	
4323	³³⁴ LFECNKLVFELSASDQPKQY ³⁵³	
4324	³⁵⁴ EQHLTDYEKIKEGFKNKNAS ³⁷³	
4325	³⁷⁴ MIKSAFLPTGAFKADRYKSH ³⁹³	
4326	³⁹⁴ GKGYNWGNYNTETQKCEIFN ⁴¹³	
4327	⁴¹⁴ VKPTCLINNSSYIATTALSH ⁴³³	
1220		
4320		
4320		
4331	⁴⁹⁴ PELVSNSTCNFFVCKCVERRY ⁵¹³	
	<u> </u>	
4332	⁵¹⁴ AEVTSNNEVVVKEEYKDEYA ⁵³³	
4333	⁵³⁴ DIPEHKPTYDKMKIIIASSA ⁵⁵³	
4334	554 AVAVLATILMVYLYKRKGNA 573	
4335	^{5/4} EKYDKMDEPQHYGKSNSRND ⁵⁹³	
4336	⁵⁹⁴ EMLDPEASFWGEEKRASHTT <u>Y</u> ⁶¹³	
4337	⁶⁰³ WGEEKRASHTTPVLMEKPYY ⁶²²	

Peptide	Kd (nM)		
4313	120 ± 12		
4315	120 ± 10		
4316	150 ± 14		
4322	700 ± 21		
4325	100 ± 09		
4328	140 ± 11		

Structural features for HABP 4325 AMA-1

Cubillos M., et al., 2002, Biochimie, 84: 1181

Chymotrypsin protease activity

Localisation:

- Immunes Merozoite Clusters (IMC)
- Schizonts
- Schizont surface in vacuole
- Merozoite-free surfaces
- Culture medium

ABRA is a conserved protein

-Its theoretical weight is 87 kDa -SDS-PAGE: 101 kDa

Curtidor H., et al., 2001, Vaccine, 19: 4496

ABRA

Peptide	Kd (nM)
2148	175
2149	73
2150	80

Structural features for 2150 HABP ABRA

Salazar L. M., et al., 2004, BBRC, 322: 119

Rhoptry proteins

Bannister L. H., *et al*, 1977, Cowman A. F., *et al*, 2000 Sherman I. W., 1998, Cowman and Crabb, 2002 Chitnis and Blackman, 2000

- Apical prominence of a merozoite interacting with red blood cell membrane.
- Rhoptry in a developing *P* falciparum merozoite, showing the basal bulb and the duct placed within the apical prominence.
- Merozoites incubated with red cells in the presence of cytochalasin, showing laminar material in rhoptries.

Fig. 2. Diagrammatic representation of the apical region of a *Plasmodium falciparum* merozoite invading a red blood cell. The lefthand half of the diagram shows ultrastructural features, whereas the right-hand half shows the molecular relationships discussed in the text.

Diagram depicting the structures involved in the formation of the invasion pit and parasitophorous vacuole membrane. PVM; parasitophorous vacuole membrane, JM; close junctional membrane, RCM; external red cell membrane.

Bannister L. H., *et al*, 1977, Cowman A. F., *et al*, 200 Sherman I. W., 1998, Cowman and Crabb, 2002 Chitnis and Blackman, 2000, A. J. Knell, 1991

Rhoptry proteins

Protein		Size	Characteristics
Rhop complex	Ag 225 Rhop 1 Rhop 2 Rhop 3	240/225 140(150) 130(140) 110/100(105)	Integral membrane protein? RBC binding protein RBC binding protein RBC binding protein
RAP-I / QF3 / p82		86pr 82/80 65/60	Associated with RBC membrane
RAP-2		40 (37/39)	-
RAMA		170	RBC binding protein
Serine protease Pf83 / AMA-I Pf60.1 MCP-I		80/76 80/66 60 60 55	Serine protease / anchored by GPI Integral membrane protein RBC binding protein? Oxydoreductase domain Integral membrane protein

Bannister L. H., *et al*, 1977, Cowman A. F., *et al*, 2000 Sherman I. W., 1998, Cowman and Crabb, 2002 Chitnis and Blackman, 2000

Dense bodies

White-embedded erythrocyte with a recently invaded merozoite (M). Section was labelled with a rabbit antibody specific for the contents of dense bodies (DB) and immunoglobuli-gold. PV; parasitophorous vacuole membrane. Inset: higher magnification of the merozoite showing release of dense body contents (arrow) through the merozoite pellicle.

RESA is associated with erythrocyte cytoskeleton after being liberated.

RIMA (14 kD) localised on early trophozoite membrane.

Pf155/RESA

Vera R., et al., 2000, Vaccine, 18: 1289

Pepti	de	Sequenc		2.0		
6664	1	MRPFHAYSWIGSQQYMGTKN	20			
6665	21	VKEKNPTIYSFDDEEKRNEN	40			
6666	41	YKSFLKVLCSKRGVLPIIGIL	60			
6667	91	YIILNGNLGYNGSSSSGVQF	80			
6668	101	TDRCSRNLYGETIPVNPYAD	100			and a state of
6669	121	YSENPIVVSQVFGLPFEKPTF	140			
6670	1/1	YTLESPPDIDHTNILGFNEKF	140			
<u>6670</u>	161	MTDVNRYRYSNNYEALPHIS	180			FIDIC
0072	181	EFNPLIVDKVLFDINEKVDN	200			
6674	201	TIGREGGDIIKKMOTLWDEIM	220			
6675	221	VENOVDWDER VEGEWIIOGT	240			
6676	241	IKVQIDMPKEAIESKWIQCI	260			
6677	261	WYPOKYI.NI.FFYPPI.TVI.NO	280			
6678	281	TAWKALSNOTOVSCRKTMNS	300			
6679	301	YDISSEKHINELKSLEHRAAK	320			
6680	321	YAAEAEMKKRAOKPKKKKSRR	340			
6681	341	YGWLCCGGGDTETVEPOOEEP	360			
ĔĔĂŻ	361	VOTVOEOOVNEYGDILPSLR	380			
<u>ĒĔŠĀ</u>	381	ASTTNSATNYYDTVKDGVYL	400			
<u> </u>	401	DHETSDALYTDEDLLFDLEK	420			
6685	421	OKYMDMLDTSEEESVEENEE	440		Dontido	Kd (nM)
<u> </u>	441	ŶEHTVDDEHVEEHTADDEHVE	460		replide	ru (IIIVI)
ĔĔŔŦ	461	YEPTVADDEHVEEPTVADEHV	480			
8888	481	YEEPTVAEEHVEEPTVAEEHV	500			
6689	501	YEEPASDVOOTSEAAPTIEIP	520		6671	190
0000	521	DTLYYDILĞŸGVNADMNEIT	540			
6691	541	ERYFKLAENYYPYQRSGSTV	560		6673	105
<u>6692</u>	561	FHNFRKVNEAYQVLGDIDKK	580			
6693	581	RWYNKYGYDGIKQVNFMNPS	600			
6694	601	IFYLLSSLEKFKDFTGTPQI	620			
6695	641	YVTLLRFFFEKRLSMNDLENK	640			
6696	661	SEHLLKFMEQYQKEREAHVS	660			
6697	681	EYLLNILQPCIAGDSKWNVP	580			
6698	701	YIITKLEGLKGSRFDIPILES	700			
6699	701	YLRWIFKHVAKTHLKKSSKSA	720			
6700	741	YKKLQQRTQANKQELANINNN	760			
6702	761	LMSTLKEILGSSEUMNSITI VNEENTNENTDNENGEVNTED	780			
6702	781		800			
6704	801	CI VDIENTAI NA AFOI I CDN	820			
6705	821		840			
6706	841	MEDAGGKDNDKKSKNEDTK	860			
6707	861	DIVGYIMHGISTINTEMKNO	880			
6708	881	VNEWVDEHVOHNAFENVEHDA	900			
6709	901	YEENVEHDAËENVEHDAEENV	920			
6710	921	YEHDAEENVEHDAEENVEENV	940	and the second		
6711	941	YEEVEENVEENVEENVE	960			
6712	961	YEVEENVEENVEENVEE	980			
6713	981	YNVEENVEENVEENVEE	1000			
6714	1001	YDEENVEEVEENVEENVEEN	1020			
6715	1021	YVEENVEENVEEVEENVEENV	1040			
6716	1041	EENVEENVEENVEEYD	1060			
6717	1054°	ENVEEYDEENVEEHNEEYDE	1073			

Structural features for HABP 6671 RESA

Alba M. P., et al., 2004, BBRC, 315: 1154

Bannister L. H., *et al*, 1977, Cowman A. F., *et al*, 2000 Sherman I. W., 1998, Cowman and Crabb, 2002 Chitnis and Blackman, 2000

Representation of *P. falciparum* and *P. vivax ebl* multi-exon structure. DBL, duffy binding-like, c-cys, carboxyl cys-rich.

EBA-181 and EBA-175 co-localisation in schizonts and free merozoites

In the *first column* the parasites are stained with 4,6-diamidino-2-phenylindole (*blue*). In the *second column* the parasites have been labelled with anti-EBA-175 antibodies (*red*). In the *third column* the parasites have been labelled with anti-EBA181ex antibodies (*green*). The *fourth column shows* co-localisation of EBA-175 and EBA-181 (*yellow*) shown by an overlay of anti-EBA175 and anti-EBA181ex micrographs. *m*, merozoite; *rbc*, red blood cell.

EBA140 and EBA175 proteins co-localise in merozoites

D10 and E12 parasite free merozoite or schizont smears are shown. Parasites were made to react with a mixture of anti-EBA140 and anti-EBA175 antibodies, followed by a mixture of FITC-labelled anti-mouse and rhodamine-labelled anti-rabbit antibodies. 'Phase' shows the brightfield image, whereas 'merge' shows the red and green images overlaid.

MAEBL is a ~250 kDa protein, located in the rhoptries and on the surface of mature merozoites.

The amino cysteine-rich domain of MAEBL has no similarity to DBL, but instead is similar to the 44-kDa fragment of the AMA-1 rhoptry protein.

The origins of *maebl, ebls,* and *ama-1* predate speciation of *Plasmodium, maebl* and other *ebls* obviously have a common ancestor gene but represent distinct lineages.

The maebl evolved as a single locus, including its unique structure, in each Plasmodium species.

The ancient origen of the maebl, its highly conserved nature among all *Plasmodium* species, its different time of expression and the distinct localization in merozoites, suggest that MAEBL has a distinct role from the DBL-EBP products.

Kappe S. H. I., *et al.*, 1998, Blair P. I., *et al.*, 2002, Michon P., *et al.*, 2002

MAEBL

Ocampo M., et al., 2004, BBRC, 315: 319

Peptide		Sequence		2.0	
30181	121	KYKLPIEIPLNKSGLSMYQG	140		
30195	401	TGSCYFLKKKPTCVLKKENH	420		
30198	461	QTNKRVLYENNKKSKRNVRT	480		
30209	681	LNFLNEIRTGYLNKYFKKDV	700		
30212	741	KSKIFSNRFTMKEYDPKTRL	760		
30213	761	FMYYGLYGLGGRLGANIKRD	780		
30219	881	YVSSFIRPDYETKCPPRYPL	900		
30220	901	KSKVFGTFDQKTGKCKSLMDY	920		
30253	1561	RAEILKQIEKKRIEEVMKLY	1580		

Erythrocyte-binding antigen-175 (EBA-175) interacts directly with the erythrocyte surface by a sialic acid-dependent epitope on glycophorin A. However, the *P. falciparum* can use alternative receptors when the prime receptor (e.g. glycophorin A) is absent or blocked.

Sim B. K. *et al.*, 1994, Kain K. C. *et al.*, 1993, Orlandi P. A. *et al.*, 1990, Sim B. K., 1998, Rodriguez L. E., *et al.*, 2000

A model for invasion via sialic acid-dependent and -independent pathways in P. falciparum.

The EBA-175 ligand is functional in erythrocyte invasion by merozoites that utilize either sialic acid-dependent or -independent invasion pathways.

Rodríguez L. E., et al., 2000, Parasitology, 120: 225

EBA-175

Peptide	Kd (nM)
1758	112
1779	175
1783	139
1814	64
1815	106
1818	146

Structural features for HABPs EBA-175

FIDIC

Cifuentes G., *et al.*, 2003, J Struct Biol., 141: 115 Guzmán F., *et al.* 2002, Life Sci., 71: 2779, Cifuentes G., *et al.*, 2004, Vaccine, In Press

EBA-140 (pfEBP-2/BAEBL) is located in the micronemes (the same location As EBA-175 and EBA-181) these proteins bind to sialoglycoproteins on the red blood cells surface.

Glycophorin C (GPC) is receptor for EBP-140 and show that the binding on GPC is limited to amino acids (aa's) 14-22 in exon 2.

Each of the polymorphisms form in the parasite ligand, BAEBL, bound to a different receptor on erythrocytes.

Why has the parasite evolved to have such diversity? What is the advantage to the parasite to have multiple niches with different erythrocyte receptors? Rodríguez L. E., et al., 2003, J Peptide Res, 62: 175

EBA-140

Peptide	Sequence	2.0
26117	MKGYFNIYFLIPLIFLYNVI [24	
26118 21	RINESIIGRTLYNRODESSD 📲	
26119 4	ISRVNSPELNNNHKTNIYDS	i
26120 0	VYDOLOGINNKTYCYOLIOO	
26122 10	CVCVDNDVENCICEMEDNCG 12	
26123 12	NTNSNNFANTSFISIGKDNKY 14	
26124 1	QYTEIQKRTHLEACGIKRKS 1	
26125 18	IKWICRENSEKITVCVPDRKY 186	
26126 18	IQLCIANFLNSRLETMEKFKY 💴	
26127 28	EIFLISVNTEAKLLYNKNEG 200	
26128 2	KDPSIFCNELRNSFSDFRNSY	
26129	FIGDDMDFGGNTDRVKGYIN 138	
26130		
26132 2	N I S K E C A L I P A F F P Q I N I W I Y 30	
26133	KEWNENFLMEKKRLFLNIKDY 🗯	
26134 📟	KCVENKKYEACFGGCRLPCS 🗯	
26135 34	SYTSFMKKSKTQMEVLTNLY	
26136 3	K K K N S G V D K N N F L N D L F K K N Y 🚟	
26137 **	NKNDLDDFFKNEKEYDDLCD	······
26136 +4	DIASOINVNDI PGEGONYKS 40	
26140 **	NNEK SWNCTGTETNKEPGTCY 4	
26141 **	EPPRRGTLCLGRTYLLHRGH	
26142 88	EEDYKEHLLGASIYEAQLLK 😽	
26143 😒	YKYKEKDENALCSIIQNSYA 540	
26144 54	DLADIIKGSDIIKDYYGKKM	
26145 2		· · · · · · · · · · · · · · · · · · ·
26147 001	KNKETCKDYDKEOKIPOEL 630	
26148 621	RWFKEWGDDFCEKRKEKIYS 66	
26149 644	FESFKVECKKKDCDENTCKNY 🕮	
26150 **	KCSEYKKWIDLKKSEYEKQV 🕮	
26151 ***	DKYTKDKNKKMYDNIDEVKN 🎬	
26152 **	KEANVYLKEKSKECKDVNFD 178	
20153 20	IKVINEIVVPKTKHOIVDID 178	
26155 22	TESDIEGDGIPISINANINEY T	
26156 32	Q Q S G K D T S N T G N S E T S D S P V Y	
26157 ***	SHEPESDAAINVEKLSGDES Y 400	
26158	SSET R G I L D I N D P S V T N N V N Y 🚧	
26159	EVHDASNTQGSVSNTSDITN Y	
26160 **	GHSESSENRTTNAQDIKIGRY ***	
26162 2	SUTICOUPSEDNTONTYDSO	
26163 2	NPHRDTPNALASLPSDDKINY 20	
26164 94	EIEGFDSSRDSENGRGDTTSY 980	
26165 222	NTHDVRRTNIVSERRVNSHDY 📟	
26166 🐃	F F R N G M A N N A H H Q Y I T Q I E 1980	
26167 1001	NNGIIRGGEESAGNSVNYKD 1000	
26168	N S D T V D V D E E I KI S V O N V 1960	
26170 1081	CNNEYSMEYCTYSDERNSSP 1980	
26171 1081	GPCSREERKKLCCQISDYCL 1100	
26172 1101	KYFNFYSIEYYNCIKSEIKS 1130	
26173 HH	PEYKCFKSEGQSSIPYFAAG 1140	
26174 1141	GILVVIVLLLSSASRMGKSNY 1180	
26175	EEYDIGESNIEATFEENNYL 1100	
26176 116	VOETNISDYSEYNYNEKNMY 1750	
20177	STATISTICS ALL STATISTICS AND STATES	

Kd (nM)
350
350
500
590
600
750

EBA-181

This ligand is expressed at the same time as EBA-175 and is located within the micronemes.

The EBA-181/JESEBL protein was identified as a ligand interacting in a sialic acid dependent manner with the erythrocyte, such binding being sensitive to erythrocyte treatment with chymotrypsin and resistant to trypsin.

The level of expression of EBA-181 differs among parasite lines, and the importance of this ligand for invasion appears to be strain-dependent.

These polymorphisms did not change the erythrocyte-binding specificity. In contrast, each point mutation in JESEBL led to the recognition of different receptors on the erythrocyte.

Why has P. falciparum evolved so many pathways for invasion?

FIDIC

JESEBL-R6

EBA-175

JESEBL / EBA181

Vera R., et al., 2004, Biochimie, In Press

Peptid	е	Sequence		2.0	
30026	1 1		20		
30027	21	CTYVLGISEEYLKERPQGLN	40		
30028	41	VETNNNNNNNNNSNSNDAY	60		
30029	61	MSFVNEVIRFIENEKDDKED <u>Y</u>	80		
30030	81	KKVKIISRPVENTLHRYPVS	100		
30031	101	SFLNIKKYGRKGEYLNRNSF	120		
30032	141		140		
30034	161		180		
30035	181	KVFDSAMYETDLLWNKYGFR	200		
30036	201	GFDDFCDDVKNSYLDYKDVI	220		
30037	221	FGTDLDKNNISKLVEESLKR <u>Y</u>	240		
30038	241	FFKKDSSVLNPTAWWRRYGT	260		
30039	261		280		
30040	301	KEKEKLITGECSVNRKKSDCY	320		
30042	321	STGCNNECYTYRSLINRQRY	340		
30043	341	EVSILGKKYIKVVRYTIFRR	360		
30044	361	KIVQPDNALDFLKLNCSECK <u>Y</u>	380		
30045	381	DIDFKPFFEFEYGKYEEKCM	400		
30046	401		420		
30047	421		440		P(
30049	461	PRROGECLONLNYLLNDDIY	480		-
30050	481	NVHNSQLLIEIIMASKQEGKY	500		
30051	501	LLWKKHGTILDNQNACKYIN	520		
30052	521	DSYVDYKDIVIGNDLWNDNN	540		
30053	541	SIKVQNNLNLIFERNFGYKV	560		3
30054	561		580		
30055	601		620		21
30057	621	WAHFFCKEKEYWELKLNDKC	640		
30058	641	TGNNGKSLCQDKTCQNVCTN <u>Y</u>	660		20
30059	661	MNYWTYTRKLAYEIQSVKYD	680		5
30060	681	KDRKLFSLAKDKNVTTFLKE Y	700		
30061	701		720		30
30062	721		740		
30064	761	ELYVNHNSVSVASGNKEIEK	780		20
30065	781	SKDEKQPEKEAKQTNGTLTVY	800		3
30066	801	RTDKDSDRNKGKDTATDTKN <u>Y</u>	820		
30067	821	SPENLKVQEHGTNGETIKEE <u>Y</u>	840		
30068	841	PPKLPESSETLQSQEQLEAE <u>Y</u>	860		
30089	861		900		
30071	901	QKQEEEQQIQDQSQSGLDQSY	920		
30072	921	SKVGVASEQNEISSGQEQNVY	940		
30073	941	KSSSPEVVPQETTSENGSSQ <u>Y</u>	960		
30074	961	DTKISSTEPNENSVVDRATDY	980		
30075	981		1000		
30078	1001		1020		
30078	1041	EDTPTVEGKVGDKAEMLTSPY	1040		
30079	1061	HATDNSESESGLNPTDDIKTY	1080		
30080	1081	TDGVVKEQEILGGGESATET <u>Y</u>	1100		
30081	1101	SKSNLEKPKDVEPSHEISEP <u>Y</u>	1120		
30082	1121	VLSGTTGKEESELLKSKSIE <u>Y</u>	1140		
30083	1141		1160		
30085	1181		1200		
30086	1201	SRIITTEVPSTTVKPPDEKRY	1220		
30087	1221	SEEVGEKEAKEIKVEPVVPR <u>Y</u>	1240		
30088	1241	AIGEPMENSVSVQSPPNVEDY	1260		
30089	1261		1280		
30090	1281		1300		
30092	1321		1340		
30093	1341	ASDREKEEIQKLLNIGHEEDY	1360		
30094	1361	EDVLKMDRTEDSMSDGVNSH Y	1380		
30095	1381	LYYNNLSSEEKMEQYNNRDA	1400		
30096	1401		1420		
30097	1421		1440		
30098	1441		1460		
30100	1481	FRKQRFTSMHYIAGGGIIAL	1500		
30101	1501	LLFILGSASYRKNLDDEKGF	1520		
30102	1521	YDSNLNDSAFEYNNNKYNKL	1540		
30103	1541		1560		

Peptide	Kd (nM)
30030	394 ± 91
30031	215 ± 37
30045	348 ± 52
30051	595 ± 117
30060	178 ± 42

Reticulocyte binding protein RBP/NBP Adhesion Family

PfNBPs are expressed at merozoites' apical end

Rabbit a

S3

PfNBP1 forms a complex with PfNBP2b, which is consistent with the known in *P. vivax*. The observed size of the PfNBP-1 in strain differents, shown expressing of a truncated PfNBP-1. By contrast, there were no size differences in PfNBP-2a or PfNBP-2b in these strains.

PfNBP1 binds to a sialic acid dependent trypsin resistant receptor on the erythrocyte surface that appears to be distinct from known invasion receptors (receptor Y).

The PfNBP-1 and PfNBP-2a and 2b are ortholog of PvRBP-1 and PvRBP-2. They are located at the apical end of merozoites and play a role in the recognition and invasion of erythrocytes by merozoites.

Taylor *et al.*, 2001, Florens *et al.*, 2002, Rayner *et al.*, 2000, Rayner *et al.*, 2001, Triglia *et al.*, 2001, Kaneko *et al.*, 2002, Triglia *et al.*, 2001, Kaneko *et al.*, 2002

 α -N1

PfNBP-1

Valbuena J. J., et al., 2003, Peptides, 24: 1007

Peptide		Sequence		•	1.0 2	2.0		
26327	1	LINIETEMKHKQKQLINKMN <u>Y</u>	20					
26328	21	DIEKDNITDQYMHDVQQNIF <u>Y</u>	40					
26329	41	EPITLKMNEYNTLLNDNHNN	60					
26330	61	NINNEHQFNHLNSLHTKIFS <u>Y</u>	80					
26331	81	HNYNKEQQQEYITNIMQRID	100				Peptide	Kd (nM)
26332	101	VFINDLDTYQYEYYFYEWNQ	120					
26333	121	EYKQIDKNKINQHINNIKNN	140				26332	650
26334	141	LIHVKKQFEHTLENIKNNEN <u>Y</u>	160				20002	490
26335	161	IFDNIQLKKKDIDDIIININ <u>Y</u>	180				20330	460
26336	181	NTKETYLKELNKKKMLQNKK	200					
26337	201	KVDEKSEINNHHTLQHDNQN <u>Y</u>	220					
26338	221	VEQKNKIKDHNLITKPNNNS <u>Y</u>	240					
26339	241	SEESHQNEQMKEQNKNILEK <u>Y</u>	260					
26340	261	QTRNIKPHHVHNHNHNHNHN <u>Y</u>	280					
26341	281	HNQNQNQKDSTKLQEQDIST <u>Y</u>	300					
26342	301	HKLHNTIHEQQSKDNHQGNR <u>Y</u>	320					
26343	321	EKKQKNGNHERMYFASGIVV	340					
26344	341	SILFLSSLGFVINSKNNKQE <u>Y</u>	360					
26345	361	YDKEQEKQQQNDFVCDNNKM	380					
26346	381	DDKSTQKYGRNQEEVMEISF	400					
26347	386	QKYGRNQEEVMEISFDNDYI	405					

The genes coding for RAP-1 and RAP-2 have been cloned, revealing no homology to other known genes. Further, RAP-1 and RAP-2 show minimal sequence polymorphisms between *P. falciparum* isolates. This protein of 84 kD, with 782 residues that is present in the rhoptries.

Rhoptry-associated protein 1 (RAP-1), which is processed into molecules of 86, 82, 70, and 67 kDa, forms heterooligomeric protein complexes with the rhoptry proteins RAP-2 and RAP-3.

p67 is relatively abundant in purified free merozoites but is not observed in ring-stage parasites, indicating that p67 is secreted or degraded prior to ring formation and there is a narrow time during which this protein may play a role in merozoite invasion of erythrocytes.

RAP1

Curtidor H., et al., 2004, Vaccine, 22: 1054

Pentid	e Sequence	2.0	
26178	¹ MSFYLGSLVIIFHVLFRNVA ²⁰		E.
26179	²¹ DGINVNGDNNYGKTIINNDF ⁴⁰		\sim
26180	⁴¹ NFDDYNYWTPINKKEFLNSY ⁶⁰		חו
26181	⁶¹ E D E F S S E S F L E N K S S V D D G N Y ⁸⁰		U
26182	⁸¹ I N L T D T S T S N K S S K K G H G R S Y ¹⁰⁰		
26183	¹⁰¹ RVRSASAAAILEEDDSKDDMY ¹²⁰		
26184	¹²¹ E F K A S P S V V K T S T P S G T Q T S Y ¹⁴⁰		
26185	¹⁴¹ G L K S S P S S T K S S P S N V K S Y ¹⁶⁰		
26186	¹⁶¹ A S P H G E S N S S E E S T T K S S K R Y ¹⁸⁰		
26187	¹⁸¹ SASVAGIVGA DEEAPPAPKNY ²⁰⁰		
26188	²⁰¹ T <u>L T P L E E L Y P</u> T N V N L F N Y K Y ²²⁰		
26189	221 SLNNMEENINILKNEGDLVAY 240		
26190	²⁴¹ QKEEFEY <u>DENMEKAK</u> QDKKK ²⁶⁰		
26191	²⁶¹ A L E K I G K Q S D E E P F M F S E N K Y ²⁸⁰	Peptide	Kd
26192	²⁸¹ F L E N Q V K E R N V A G S F S R F F S Y ³⁰⁰		
26193	³⁰¹ KLNPFKKDEVIEKTEVSKKTY ³²⁰	00400	•
26194	³²¹ F S G I G F N L T D K E A K V L G V G A Y ³⁴⁰	26188	8
26195	³⁴¹ TYQEYPETMLYNCPNNSNLF ³⁶⁰	26201	7
26196	³⁶¹ DTIESLQGRIIDIKKRESMIY ³⁸⁰	26202	٩
26197	³⁸¹ STTFEQQKECLKNMGVLDLEY ⁴⁰⁰	20202	Э
26198	401 LNDTQCKFGTCIGSFGEHHLY ⁴²⁰	26204	7
26199	421 RLYEFENDLFKFHPNIDYLT 440		
26200	441 LADGYKLQKNHIYELSHVNF 460		
26201	461 C L L N P K T L E E F L K K K E I K D L Y 480		
26202	⁴⁸¹ MGGDDLIKYKENFDNFMSIS ⁵⁰⁰		
26203	⁵⁰¹ I T C H I E S L I Y D D I E A S Q D I A ⁵²⁰		
26204	⁵²¹ AVLKIAKSKLHVITSGLSYK ⁵⁴⁰		
26205	⁵⁴¹ ARKLVYKIYSEIQKNPDELY ⁵⁶⁰		
26206	⁵⁶¹ EKLTWIYDNIYMIKRYYTAY ⁵⁸⁰		
26207	⁵⁸¹ A L E G V C S Y L E H D K S Q M Y T E L ⁶⁰⁰		
26208	⁶⁰¹ HIYNKIVDSVRYYSSCFKNV ⁶²⁰		
26209	⁶²¹ I V Y N A I I S G I H E K I K H F L K L ⁶⁴⁰		
26210	⁶⁴¹ VPRHNFLLDYHFNSIFEKEI ⁶⁶⁰		
26211	⁶⁶¹ KPAKKYSTSHIYFDPTVASY ⁶⁸⁰		
26212	⁶⁸¹ AYYNLDRRTMVTIINDYFEA ⁷⁰⁰		
26213	⁷⁰¹ KKKELTVIVSRMKTDMLSLQY ⁷²⁰		
26214	721 NEESKIPNDKSANSKLATRLY 740		
26215	⁷⁴¹ MKKFKAEIRDFFKEMRIQYAK ⁷⁶¹		
26216	⁷⁶² LINIRYRSHLKKNYFAFKRLD ⁷⁸²		

Peptide	Kd (nM)	
26188	805	
26201	700	
26202	900	
26204	760	

López R., et al., 2004, Biochimie, 86: 1

RAP2

Peptide		Sequence		2.0	
26217	1	MGLKFYVLVFLILCLKNVVK	20		
26218	21	GDKCETEFSKLYPESNSLTG	40		
26219	41	LIYAHTAHVHKLSMWVYFIY	60		
26220	61	NHFSSADELIKYLEKTNINT	80		
26221	81	LENSDHTCFARAVTLYLFYY	100		
26222	101	YLKDIKSMLSTDDYQSFFKN	120		
26223	121	KFKDINPLFINDFILILNDKY	140		
26224	141	KFMENLDLYIMKESEREHLV	160		
26225	161	IKKNPFLRVLNKASTTTHATY	180		
26226	181	YKSNPYFIVGSRVHTPYKDY	200		
26227	201	LGDFNKYTEISVLNYVRDYN	220		
26228	221	FLIYAGSRENYYNSDIAGPA	240		
26229	241	RSVNNVISKNKTLGLRKRSSY	260		
26230	261	SLALVGTNNNDPIFAYCEKD	280		
26231	281	NKSEYYGTPDDLITSFFSII	300		
26232	301	KTKMLNSHKTFLRQFDYALF	320		
26233	321	HKTYSIPNLKGFRFLKHLFQ	340		
26234	341	KKNLVNFVGMYENHVSTEIN	360		
26235	361	FLAEDFVELFDVTMDCYSRQ	380		
26236	381	RQYSNRAAENFKAIRELNVL	400		
6800	contro	YNNSAFNNNLCSKNAKGLNLN			

Peptide	Kd (nM)
26220	950
26225	700
26229	700
26235	533

http://dwknowles.lbl.gov/membrane/membrane.html, Dolan *et al.*, 1990, Thopmson *et al.*, 2001, Rayner *et al.*, 2001, Triglia *et al.*, 2001, Baldi *et al.*, 2000

PfEMP1

ATS = Acidic Terminal Segment

Highly polymorphic interdomain region

Conserved cytoplasmic domain

Other molecules that could mediate adherence:

- Sequestrin
- Modified RBC band 3 •
- Rosettins ٠
- Pf332 ٠
- Clag9

Chen B. Q. et al., 1998 http://sites.huji.ac.il/malaria/FramInteractions.html

Host cell - endothelial or placental syncytiotrophoblast

PfEMP-3, RESA, MESA FEST y FIRA (playa), KAHRP y PfEMP-1 (Centro)

Numerous proteins exported from the parasite interact with the red blood cell membrane skeleton proteins and dramatically alter their structure and function.

Alteration of infected erythrocyte membrane

Knobs by A SEM, B TEM, C Freeze-fracture and D. TEM. Knobs are 40nm in height and 90-100nm in width, with an underlying electron-dense material containing several parasite proteins, including histidine –rich protein. PfEMP 1 (*Plasmodium falciparum* erythrocyte membrane protein 1) as well as a modified form of the intrinsic red cell membrane protein band 3 associated with the knob.

KAHRP I, HRPII and HRPIII

López R., et al., 2004, Acta Tropica, 75: 349

Rosetting

Rosetting, single P. falciparum-infected erythrocyte is seen by light microscopy held by a 5-mm micropipette. Uninfected erythrocytes are stripped off the infected cell and careful examination confirms that they are indeed infected by a single parasite.

Vogt A. M. *et al.*, 2003

Membrane profiles in *P. falciparum*infected erythrocytes

(a) Field-stained *P. falciparum.* This staining method identifies the parasite and reddish stained dot-like structures, corresponding to Maurer's clefts, within the erythrocyte cytosol. (b) Membrane visualisation by live cell fluorometry. Live infected erythrocyte were stained with the fluorescent dyes RH237 (red channel) and LysoSensor Green DND153 (green channel). (c) showing various membrane profiles in the cytoplasm of infected erythrocytes. Inset in (c) shows small vesicles of 15–25 nm in size, between the erythrocyte plasma membrane and Maurer's clefts. Mc, Maurer's clefts in cross section; Mf, Maurer's clefts in flat section; R, ring; V, vesicle; TVM, tubovesicular membrane network; W, whorls.

Proposed models for protein transport to the plasma membrane of *P. falciparum*-infected erythrocytes. (a) Vesicular transport model and (b) Lateral diffusion model.

Compilation of Maurer's cleft-associated *P. falciparum* proteins

Protein	Relationship to Maurer's clefts	Suggested function
KAHRP	Transiently associated with cytosolic face	Knob formation/presentation of PfEMP1
MAHRP	Resident/trans-membrane protein	Protection against oxidative stress/protein trafficking
Pf50/43 ^a	Integral membrane proteins	Macromolecule transport?
Pf130	Peripheral membrane protein?	Unknown
Pf20, Pf29, Pf45 ^a	Unknown	Protein transport?
Pf332	Transiently associated with cytosolic face	Unknown
Pf41-2	Membrane anchored?	Unknown
Pf45 ^a	Unknown	Unknown
Pf46 ^a	Integral membrane protein	Protein transport?
Pf50	Unknown	Unknown
Pf50, Pf41	Resident/peripheral membrane proteins	Underlying membrane skeletal network
PfEMP1	Transiently associated/trans-membrane protein	Cytoadherance/immune invasion
PfEMP3	Transiently associated with cytosolic face	Protein transport?
PfSar1p	Transiently associated with cytosolic face	Putative COPII
PfSBP1 ^a	Resident/integral membrane protein	Anchoring of Maurer's clefts to erythrocyte cytoskeleton
PfSec23p	Transiently associated with cytosolic face	Putative COPI
PfSec31p	Transiently associated with cytosolic face	Putative COPII
PfSEP	Integral membrane protein	Parasite invasion?
STEVOR	Resident/trans-membrane protein	Immune evasion?

^aIt is possible that these studies may have independently identified the same protein.

SERA/SERP

P. falciparum (126kD).

•This is secreted in the parasitophorous vacuole during trophozoite maturation.

•The gene encoding a protein having a signal sequence, with no transmembrane domain.

•It is processed into 3 fragments: 50, 43 and 18 kDa. The last 2 are bound by cysteines.

•SERA is implicated in merozoite liberation.

•PfSERP-H.

P.vivax

•5 genes have been identified in tandem encoding homologous sequences with PfSERA/SERP.

•Its real function may be quite different to that of having proteolytic activity.

- 1. LKETNNAISFESNSGSLEKK
- 2. VRGDTEIPSDSSSSSSSS
- **3 ALGSDIPEKCDTLASNCFLS**
- 4. DNILVKMFKTNENNDKSELI

- 5. DQGNCDTSWIFASKYHLETI
- 6. KKVQNLCGDDTADHAVNIVG
- 7. NEVSERVHVYHILKHIKDGK

Structural features for HABPs SERA

Cubillos M., et al., 2003, Biochimie, 85: 651

Other proteases

gp76 P. falciparum

•This is a 83/76 kDa protease localised in the rhoptries.

•It becomes activated on being liberated from GPI anchoring on the membrane.

•It has a 68 kDa homologue in *P.chabaudi* which is activated in the same way.

•Its specificity is classified as chymotrypsin neutral serine proteases.

•A external fragment from Band 3 can be cleaved from intact erythrocytes; this seems to be required for *P. falciparum* and *P. chabaudi* invasion.

- P. falciparum cysteine protease
- •This is an 68 kDa neutral protease.
- •It is inhibited by leupeptin and antipain.
- •It is localised in the apical part.
- •The loss of its activity inhibits P. falciparum merozoite in vitro invasion.

Mature female (F) and male (M) gametocytes and trophozoites (T) of *Plasmodium falciparum* in the blood of malaria-infecte patient. This picture is a composite of several pictures originating from the same Giemsa-stained thin smear.

Figure 10. Scanning electron micrograph of exflagellating male gametocyte of *P. yoelii*.

Contreras-Ochoa C., et al., 2004, http://www.dpd.cdc.gov/dpdx/HTML/ImageLibrary/Malaria_il.asp?body=M-R/Malaria/falciparum/body_Malaria_falciparum_il4.htm

Plasmodium falciparum gametocytes: *P. falciparum* gametocytes have a crescent or banana shape.

Plasmodium malariae gametocytes: *P. malariae* gametocytes have a round shape about the size of red blood cells. They have a fine granular appearance.

Image from DPDx, the CDC Parasitology Website

Plasmodium ovale gametocytes: these are round gametocytes which are larger than normal red blood cells. They have a granular appearance as well as Schuffner's dots.

Cuadro I PROTEÍNAS DE GAMETOCITOS DE PLASMODIUM VIVAX Y P FALCIPARUM

Proteína	Esp	ecie Ubicación	Comentario
Pr11-1	Pſ	Vacuola parasitófora de gametocitos	Contribuye a la ruptura del eritrocito durante la gametogénesis52
Pr16	Pf	Proteína integral de membrana	Contribuye al bloqueo de la transmisión, candidato a vacuna53
		de gametocitos	
Pvs20	Pv	Gametocitos	Función desconocida ⁵⁴
Pvs24	Pv	Gametocitos	Función desconocida54
Pr25	Pf	Citoplásmica, se expresa en la	Contribuye al bloqueo de la transmisión ⁵⁵
		superficie de gametos, zigoto y	
		ooquineto	
Pvs25	Pv	Gametocitos	Contribuye al bloqueo de la transmisión ⁵⁶
P1g27	Pſ	En gametocitos desde etapas tempranas	Contribuye al bloqueo de la transmisión ¹
Pvs28	Pv	Gametocitos	Contribuye al bloqueo de la transmisión ⁵⁵
Pv42/37	Pv	Citoplasma de macrogametocitos	Función desconocida54
Pfs48/45	Pv	Citoplasma de gametocitos y en la	Contribuye al bloqueo de la transmisión ¹
		superficie de gametos	
Alfa tubulina	Pv	Axonema de microgametocitos	Participa en los cambios morfológicos durante la exflagelación y en
50 kDa			la motilidad del parásito ⁵⁷
Pvs57	Pv	Gametocitos	Función desconocida ⁵⁴
Pfs230	Pf	Superficie de gametocitos y gametos	Contribuye al bloqueo de la transmisión ⁵⁸
P/EMP-1	Pf	Gametocitos desde etapas tempranas	Contribuye a la producción de gametocitos, regulando su maduración59
Pfg377	Pſ	Macrogametocitos maduros	Función desconocida ⁶⁰
PSLAP	Pf	Gametocitos maduros	Participa en la modulación y protección contra el sistema inmune
			del mosquito ⁶¹

Receptors involved in merozoite invasion

Receptors on RBCs for invasion. *Glycophorin A *Glycophorin B *Glycophorin C *Band 3 *Receptor X *Receptor Y *Receptor Z *Receptor E Receptors on endothelial cells for cytoadherence

*ICAM1 *ICAM2 *PECAM1 *VCAM1 *E-selectin *TSP *CD31 *CD36 *α_vβ₃Integrin *HS *BgA *CR1 *IgM *CSA * Hyaluronate

	Antigen	Localization
Ring Troph, Schizont	/ MSP4	merczoite plasma membrane
	41kDa Ag	unknown
	MAg1	erythrocyte plasma membrane
		erythrocyte plasma membrane
	CLAG2	erythrocyte plasma membrane
	Pf12 Ag	unknown
	RhopH3	rhoptry
States and States and States	RAP-like	rhoptry
	MSP1	merozoite plasma membrane
	MSP7	merozoite plasma membrane
	RhopH1	rhoptry
	RAP1	rhoptry
	RAP2	rhoptry
	RAP3	rhoptry
	MSP3	merozoite plasma membrane
	EBL-1	merozoite plasma membrane
States and a second diversities the	AMA1	micronemes
	MSP5	micronemes
	/ MSP6	merozoite plasma membrane
	/ RBP2a	merczoite plasma membrane
	//MSP8-like	unknown
	// RBP2b	merozoite plasma membrane
	RBP2a-like	merozoite plasma membrane
	EBL1-like	merczoite plasma membrane
A CONTRACTOR OF A DESCRIPTION OF A DESCRIPANTE A DESCRIPANTE A DESCRIPANTE A DESCRIPTION OF A DESCRIPTION OF	RBP1-like	merozoite plasma membrane
	EBA 140	merozoite plasma membrane
	EBA 175	micronemes
	RESA1	micronemes
-6 0 6 log ₂ (Cy5/Cy3)	Boze	edech Z et al August 18 2003. PLOS Bi

ology 1, 001

High RBC binding activity peptides

PROTEIN	С	V	Reference
MSP1	3	6	Urquiza M. et. al. 1996. Parasite Immunology . 18: 515-526
RESA	2	—	Vera R. <i>et al</i> . 2000. <i>Vaccine.</i> 18: 1289-1293
SERA	6	1	Puentes A. et. al. 2000. Parasitology International. 49: 105-117
MSA2	1	2	Ocampo M. <i>et. al</i> . <i>J. Peptide Research.</i> 55: 216-233
EBA175	6	—	Rodríguez L.E <i>et. al.</i> 2000. <i>Parasitology.</i> 120: 225-235
GBP130	1	—	Suárez J. <i>et. al</i> . 2000. <i>Mem. Inst. Oswaldo Cruz</i> . 95: 495-501
HRP I, II, II	3	1	López R. <i>et a</i> I. 2000. <i>Acta Tropica.</i> 75: 349-359
ABRA	5	—	Curtidor H. <i>et. al</i> . 2001. <i>Vaccine.</i> 19: 4496-4504
AMA1	4	3	Urquiza M. <i>et. al</i> . 2001. <i>Vaccine.</i> 19: 508-513
EBA140	6	—	Rodríguez L.E <i>et. al</i> . 2003. <i>J. Peptide Research.</i> 62: 175-184
NBP1	2	—	Valbuena J. <i>et al</i> . 2003. <i>Peptid</i> es . 24: 1007-1014
MSP8	5	—	Puentes A. <i>et. al.</i> 2003. <i>Peptides</i> .24: 1015-1023
MAEBL	9	—	<u> Ocampo M. et al. 2004. Biochem. Biophys. Res. Comm. 315: 319-32</u> 9
RAP2	4	—	López R. <i>et al.</i> 2004. <i>Biochemie</i> . 86: 1-6
RBP2 Ha/Hb	9	3	Ocampo M. <i>et. al</i> . 2004. <i>Parasitol. Int.</i> 53: 77-88
RAP1	4	—	Curtidor H. <i>et. al</i> . 2004. <i>Vaccine</i> . 22: 1054-1062
EBA160	5	—	Valbuena J. et al. 2004. <i>Biochem. Biophys. Res. Comm</i> . 321: 835-844
CLAG3	5	—	Ocampo M. et. al. 2005. Proteins Science . 14: 504-513
EBL1	5	—	Curtidor H. <i>et. al.</i> 2005. <i>Protein Science</i> . 14: 464-473
JESEBL	5	—	Vera R. et al. 2004. Biochemie. In press
STEVOR	—	3	García J. e <i>t al.</i> 2004. Peptides. In press
MSP10	3	—	Puentes A. <i>et al</i> . 2004. <i>Biochemie. In pres</i> s
MSP3	3	—	Rodríguez L.E. et. al. 2004. Submitted to Protein Science
SORTILIN	6	—	Vera R. et al. 2004. Submitted to Biochemistry
RESA-LIKE	3	—	Rodríguez L.E. et. al. 2004. Submitted to J. Int. Parasitol.
TryThrA	4	—	Curtidor H. et. al. 2004. Submitted to Chembiochem
HAP	2	—	Valbuena J. <i>et. al</i> . 2004. Submitted to Biol. Chem.
MSP6	2	1	López R. et al. 2004. Submitted to Peptides

C : CONSERVED V: VARIABLE

FIDIC's receptor-ligand group

Ricardo Vera, Marisol Ocampo, John J. Valbuena, Ramsés López Álvaro Puentes, Hernando Curtidor, Javier E. García, Luis E. Rodríguez

front row back row

Fundación Instituto de Inmunología de Colombia

